Deep Neural Networks and the Tree of Life
نویسندگان
چکیده
In Evolutionary Biology, species close in the tree of evolution are identified by similar visual features. In computer vision, deep neural networks perform image classification by learning to identify similar visual features. This leads to an interesting question: is it possible to leverage the advantage of deep networks to construct a tree of life? In this paper, we make the first attempt at building the phylogenetic tree diagram by leveraging the high-level features learned by deep neural networks. Our method is based on the intuition that if two species share similar features, then their cross activations in the softmax layer should be high. Based on the deep representation of convolutional neural networks trained for image classification, we build a tree of life for species in the image categories of ImageNet. Further, for species not in the ImageNet categories that are visually similar to some category, the cosine similarity of their activation vectors in the same layer should be high. By applying the inner product similarity of the activation vectors at the last fully connected layer for different species, we can roughly build their tree of life. Our work provides a new perspective to the deep representation and sheds light on possible novel applications of deep representation to other areas like Bioinformatics.
منابع مشابه
Provide a Deep Convolutional Neural Network Optimized with Morphological Filters to Map Trees in Urban Environments Using Aerial Imagery
Today, we cannot ignore the role of trees in the quality of human life, so that the earth is inconceivable for humans without the presence of trees. In addition to their natural role, urban trees are also very important in terms of visual beauty. Aerial imagery using unmanned platforms with very high spatial resolution is available today. Convolutional neural networks based deep learning method...
متن کاملEstimation of Hand Skeletal Postures by Using Deep Convolutional Neural Networks
Hand posture estimation attracts researchers because of its many applications. Hand posture recognition systems simulate the hand postures by using mathematical algorithms. Convolutional neural networks have provided the best results in the hand posture recognition so far. In this paper, we propose a new method to estimate the hand skeletal posture by using deep convolutional neural networks. T...
متن کاملUse of Artificial Neural Networks to Examine Parameters Affecting the Immobilization of Streptokinase in Chitosan
Streptokinase is a potent fibrinolytic agent which is widely used in treatment of deep vein thrombosis (DVT), pulmonary embolism (PE) and acute myocardial infarction (MI). Major limitation of this enzyme is its short biological half-life in the blood stream. Our previous report showed that complexing streptokinase with chitosan could be a solution to overcome this limitation. The aim of this re...
متن کاملUse of Artificial Neural Networks to Examine Parameters Affecting the Immobilization of Streptokinase in Chitosan
Streptokinase is a potent fibrinolytic agent which is widely used in treatment of deep vein thrombosis (DVT), pulmonary embolism (PE) and acute myocardial infarction (MI). Major limitation of this enzyme is its short biological half-life in the blood stream. Our previous report showed that complexing streptokinase with chitosan could be a solution to overcome this limitation. The aim of this re...
متن کاملThe Diagnosis of Brucellosis in Rafsanjan City Using Deep Auto-Encoder Neural Networks
Introduction: Brucellosis is considered as one of the most important common infectious diseases between humans and animals. Considering the endemic nature of brucellosis and the existence of numerous reports of human and animal cases of brucellosis in Iran, the incidence of human brucellosis in Rafsanjan city was determined in the last 3 years (2016–2018). The main objective of this study was t...
متن کاملCystoscopy Image Classication Using Deep Convolutional Neural Networks
In the past three decades, the use of smart methods in medical diagnostic systems has attractedthe attention of many researchers. However, no smart activity has been provided in the eld ofmedical image processing for diagnosis of bladder cancer through cystoscopy images despite the highprevalence in the world. In this paper, two well-known convolutional neural networks (CNNs) ...
متن کامل